
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 313 (2008) 772–783

www.elsevier.com/locate/jsvi
Nonlinear natural frequencies of an elastically
restrained tapered beam

M.S. Abdel-Jabera, A.A. Al-Qaisiab, M. Abdel-Jaberc, R.G. Bealed,�

aDepartment of Civil Engineering, Faculty of Engineering and Technology, University of Jordan, Amman, Jordan
bDepartment of Mechanical Engineering, Faculty of Engineering and Technology, University of Jordan, Amman, Jordan

cDepartment of Civil Engineering, Faculty of Engineering, Applied Science University, Amman, Jordan
dDepartment of Mechanical Engineering, School of Technology, Oxford Brookes University, Oxford, UK

Received 29 May 2007; received in revised form 15 November 2007; accepted 26 November 2007

Available online 22 January 2008
Abstract

This paper presents the results of an analysis of an elastically restrained tapered cantilever beam using the harmonic

balance and the time transformation methods. The results of the analysis show that the frequencies obtained from a

two-term harmonic balance analysis are the most accurate and that the frequencies of the first and second modes of

vibration change from a hardening mode (i.e. the frequency increases as the vibration amplitude increases) to a softening

mode (i.e. the frequency decreases as the vibration amplitude increases) as the taper ratio of the beam is increased.

The third mode is always softening regardless of the taper ratio.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineering structures, such as offshore structure piles, oil platform supports, oil-loading terminals,
tower structures and moving arms, can be modelled as tapered beams. Since these structures are relatively
flexible due to their high aspect ratio and as they are usually subjected to various excitation loads such as wind
loads, wave loads and other excitations, the prediction of their nonlinear natural frequencies is required for
design and analysis.

Most of the previous research in this direction has been oriented towards the calculation of linear natural
frequencies and mode shapes [1–6], with different end conditions and with attached inertia elements at the free
end of the beam. Nageswara Rao and Venkateswara Rao [7] presented a simple formulation for the large-
amplitude free vibrations of tapered beams. The method is based on an iterative numerical scheme to obtain
results for tapered beams with rectangular and circular cross sections.

The objective of the present work is to extend the analysis and the results obtained in Refs. [8–10] by studying
the nonlinear, planar, large-amplitude free vibrations of an elastically restrained tapered beam for the cases of a
double taper beam and a single taper ‘‘wedge-shaped beam’’. The mathematical model is derived using the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Lagrange method and the resulting continuous equation is discretized using the assumed mode method. The
inextensibility condition [11] is used to relate the axial shortening due to transverse deflection in the formulation
of the kinetic energy of the beam and the nonlinear curvature is used in the potential energy expression.

2. Mathematical model

2.1. System description and assumptions

A schematic of the beam under study is shown in Fig. 1. The physical properties, modulus of elasticity,
E, and density r, of the beam are constants. The beam thickness and width vary linearly along the beam axis.
The restrained end of the beam is modelled by a torsional spring, Kr, in combination with a translational
spring, Kt. The cross-sectional area and moment of inertia at the large end are A1 and I1, respectively.

The thickness of the beam is assumed to be small compared to the length of the beam, so that the effects of
rotary inertia and shear deformation can be ignored. The beam transverse vibration can be considered to be
purely planar and the amplitude of vibration may reach large values.

2.2. Derivation of the equation of motion

The potential energy of the system consists of the strain energy due to the bending deformation and the
elastic energy stored in the torsional spring Kr and the translational spring Kt and can be written as

V ¼
El

2

Z 1

0

IðzÞR2 dzþ
1

2
fKrv

02 þ Ktv
2g

���
z¼1

, (1)

where z ¼ s/l and R is the curvature of the beam neutral axis. R takes the form [8,10]

R ¼ lf0, (2)

where l ¼ 1/l, the prime is the derivative with respect to the dimensionless length, z, and f is the change in
slope along the beam (see Fig. 2). In order to express the exact curvature in terms of the transverse deflection,

n, it is noted that cos f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 f

q
. This implies that sinf ¼ dn/ds ¼ ln0 (see Fig. 2). Differentiating

sinf ¼ ln0 with respect to z, using the above trigonometric identities, expanding the resulted term in a power
series and retaining the terms up to the fourth order, the nonlinear curvature R can be expressed as

R2 ¼ l4ðv002 þ l2v00
2
v0
2
Þ. (3)
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Fig. 1. A schematic for the tapered beam.
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Fig. 2. The deformed inextensible beam.
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The kinetic energy T of the beam can be written as

T ¼
1

2
rl

Z 1

0

AðzÞ½ _u2 þ _v2�dz, (4)

where u is the axial shortening due to bending deformation as can be seen in Fig. 2. The inextensibility
condition dictates that a total axial shortening u is given by [10]

lu ¼ z�
Z z

0

cos fdZ ¼ z�
Z z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðlv0Þ2

q
dZ. (5)

Expanding the radical term in a power series, assuming that (ln0)251, the axial shortening can be
represented as

u ¼
1

2

Z z

0

lv0
2
þ

l3

4
v0
4

� �
dz. (6)

Differentiating Eq. (6) with respect to time yields

_u ¼
1

2

d

dt

Z z

0

ðlv0
2
Þdz. (7)

The Lagrangian of the beam can expressed as

L ¼ T � V . (8)

The continuous system in Eq. (8), like most nonlinear systems, does not admit a closed-form solution.
However, the interest here is in the case where the beam motion is dominated by single active mode. Therefore
an assumed single mode approach is used to discretize the continuous Lagrangian. The assumption is made
that

vðz; tÞ ¼ fiðzÞqðtÞ, (9)

where f(z) is the normalized, self-similar (i.e. independent of the motion amplitude) assumed mode shape of
the beam and q(t) is an unknown time modulation of the assumed deflection mode fi(z). In the present work
fi(z) for a double tapered beam is (see Ref. [6])

fiðzÞ ¼ z�1½C1J2ðZÞ þ C2Y 2ðZÞ þ C3I2ðZÞ þ C4K2ðZÞ�, (10)
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where A(z) ¼ A1(z)
2 and I(z) ¼ I1(z)

4, and for wedge-type beams (single taper)

fiðzÞ ¼ z�1=2½C1J1ðZÞ þ C2Y 1ðZÞ þ C3I1ðZÞ þ C4K1ðZÞ�, (11)

where A(z) ¼ A1z and I(z) ¼ I1(z)
3.

For both cases Z ¼ 2bz1=2, b4 ¼ rA1L
4
1o

2
l =EI1, ol is the linear frequency of vibration, J and Y are Bessel

functions of the first and second kind, respectively, and I and K are modified Bessel functions of the first and
second kind, respectively. C1–C4 are arbitrary constants to be determined by imposing the following boundary
conditions to both ends of the beam:

EIðzÞf00i ðz0Þ ¼ 0, (12)

d

dz
ðEIðzÞf00i ðz0ÞÞ ¼ 0, (13)

Krf
0
ið1Þ � EIðzÞf00i ð1Þ ¼ 0, (14)

d

dz
ðEIðzÞf00i ð1ÞÞ � Ktfð1Þ ¼ 0. (15)

Using Eqs. (7), (9) and (10) or (11) the Lagrangian expression of the beam system can be written as

L ¼ rl3ðb1 _q
2 þ b2q2 _q2 � b2b3q

2 � b2b4q4Þ, (16)

where

b1 ¼
Z 1

0

A�1f
2 dz, (17)

b2 ¼
Z 1

0

A�1

Z z

0

f02 dw
� �2

dz, (18)

b3 ¼
Z 1

0

I�1f
002 dzþ

Ktl
3

EI1
fð1Þ2 þ

Krl

EI1
f0ð1Þ2, (19)

b4 ¼
Z 1

0

I�1f
02f002 dz. (20)

For the double tapered beam A�1 ¼ A1z
2 and I�1 ¼ I1z

4, and for the single tapered wedge beam A�1 ¼ A1z
and I�1 ¼ I1z

3.
Applying the Euler–Lagrangian relation to the system Lagrangian,

d

dt

qL

q _q

� �
�

qL

qq
¼ 0, (21)

the following nonlinear non-dimensional uni-modal equation of motion is obtained:

b1 €qþ b2ðq
2 €qþ q _q2Þ þ b2ðb3qþ 2b4q

3Þ ¼ 0. (22)

It is to be noted that some of the coefficients bi in Eq. (22), defined by Eqs. (17)–(20), in general
may have large values. Therefore, for convenience, Eq. (22) is scaled and converted to the dimensionless
form

€qþ qþ �1ðq
2 €qþ q _q2Þ þ �2q

3 ¼ 0. (23)

A dot is used to denote a derivative with respect to the non-dimensional time. t� ¼ ðb2b3=b1Þ
1=2t, e1 ¼ b2/b1

and e2 ¼ 2b4/b3 are dimensionless coefficients.
Eq. (23) describes the nonlinear, planar, flexural free vibration of the inextensible tapered beam. In this

equation, the terms �1 €qq2 and �1q _q
2 are inertial nonlinearities due to the kinetic energy of axial motion which

arise as a result of using the inextensibility condition and they are of softening type (i.e., they lead to a decrease
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in the natural frequency when the vibration amplitude increases). The nonlinear term e2q
3 is due to the

potential energy stored in bending and arises as a result of using nonlinear curvature and it is of hardening
static type (i.e., it leads to an increase in the natural frequency when the vibration amplitude increases). The
nonlinear natural frequencies of the beam are dominated by the two competing nonlinearities mentioned
above, and the behaviour of the elastically restrained tapered beam considered in this paper is either hardening
or softening depending on the ratio e1/e2 [9].
3. Method of solution

The calculations of the coefficients bi in Eqs. (17)–(20), e1 and e2, indicate that the nonlinear oscillator
described in Eq. (23) is strongly nonlinear, and the nonlinear natural frequencies are calculated using two
methods: the harmonic balance method (HB) and the time transformation method (TT). The initial conditions
are taken to be q(0) ¼ A and _qð0Þ ¼ 0; where A is the amplitude of the motion.
3.1. The harmonic balance method

According to the HB method, an approximate single-term solution (SHB) takes the form [4]

qðt�Þ ¼ A cosðot�Þ, (24)

where o is the nonlinear natural frequency. Substituting Eq. (24) and its derivatives into Eq. (23) and equating
coefficients, one obtains

o2 ¼
1þ ð3=4Þ�2A2

1þ ð�1A
2=2Þ

. (25)

To improve the accuracy of the assumed solution, more terms can be added and a two-term solution is
sought (2THB), such that

qðt�Þ ¼ A1 cosðot�Þ þ A3 cosð3ot�Þ. (26)

Using the above-mentioned initial conditions yields

A ¼ A1 þ A3. (27)

Substituting Eq. (26) and their derivatives into Eq. (23) and equating the coefficient of each of the assumed
harmonics, one obtains

A3 ¼
ð�2=4ÞðA

3
1 þ 3A3

3Þ � ð�1o
2=2ÞðA3

1 þ 9A3
3Þ

ð1þ ð3�2A2
1=2Þ � o2ð9þ 5�1A2

1Þ
, (28)

o2 ¼
1þ ð3�2=4ÞðA

2
1 þ A1A3 þ 2A2

3Þ

1þ ð�1=2ÞðA
2
1 þ 3A1A3 þ 10A2

3Þ
. (29)

Eqs. (28) and (29) are solved numerically for a given amplitude A, using an iterative technique with an
accuracy of 10�6. To speed up convergence of the two-term (2THB) method the initial iteration uses the results
found from the single-term harmonic balance (SHB) method.
3.2. The time transformation method

The time transformation method, described in detail in Ref. [8], is used to obtain an approximation to the
frequency–amplitude relation of the nonlinear oscillator given in Eq. (23). Accordingly, a single-valued
transformation Tðt�Þ is sought between the time t* and a new time domain T and the solution of Eq. (23) is
simple harmonic with a period equal to 2p, i.e. one assumes q(T) ¼ A cosT, where T(0) ¼ 0. Transforming
Eq. (23) to the new time domain, T, defining F ¼ dT=dt� and substituting for q(T) ¼ A cosT and its
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derivatives into Eq. (23), one obtains

1� F2ð1þ
�1
2

A2Þ þ
3

4
�2A2

� �
cos T þ

A2

4
ð�2 � 2�1F2Þ cos 3T � FF 0 1þ

�1
4

A2
� 	

sin T þ
�1
4

A2 sin 3T
n o

¼ 0,

(30)

where a prime denotes a derivative with respect to time T. Eq. (30) can be solved for F2 by noting that, since
the nonlinear equation (23) does not involve even nonlinearities, a series solution of period 2pmay be assumed
in the form, using two terms only:

F 2 ¼
X1
n¼0;2

Gn cos nT ¼ G0 þ G2 cos 2T þ G4 cos 4T . (31)

Substituting Eq. (31) into Eq. (30), equating to zero the coefficient of each harmonic in the resulting
equation, and solving for G0, G2 and G4, one obtains the following expressions for the coefficients G0, G2

and G4:

G0 ¼
1

4D
fð96þ 4�1A2ð20þ 3�1A2ÞÞ þ �2ð3A2 � A4ð3�1 þ �

2
1A

2ÞÞg, (32)
SHB
2THB

STT
2TTT

Numerical
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Fig. 3. Nonlinear natural frequency versus amplitude of the first mode for a single tapered beam.

Table 1

Comparison of nonlinear natural frequencies obtained from different models with the numerical solution

Amplitude 0.0 0.095 0.188 0.279 0.366 0.448 0.523

Exact (numerical) 4.410 4.485 4.543 4.575 4.585 4.592 4.600

Rao and Rao [7] 4.292 (2.67%) 4.299 (4.14%) 4.317 (4.97%) 4.348 (4.96%) 4.392 (4.20%) 4.452 (3.05%) 4.528 (1.56%)

SHB 4.355 (1.36%) 4.293 (4.14%) 4.360 (4.02%) 4.423 (3.32%) 4.462 (2.68%) 4.488 (2.26%) 4.504 (2.09%)

2THB 4.410 (0.00%) 4.465 (0.45%) 4.530 (0.29%) 4.561 (0.31%) 4.577 (0.17%) 4.585 (0.15%) 4.589 (0.24%)

STT 4.410 (0.00%) 4.494 (0.20%) 4.665 (2.69%) 4.729 (3.37%) 4.716 (2.86%) 4.673 (1.76%) 4.637 (0.80%)

2TTT 4.410 (0.00%) 4.497 (0.27%) 4.686 (3.15%) 4.759 (4.02%) 4.635 (1.09%) 4.391 (4.38%) 4.161 (9.54%)

Results in parenthesis represent the error. Amplitude values are the same as those in Ref. [7].
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G2 ¼
1

16D
f�1A

2ð3� �1A2Þð4� 3A2�2Þ � ð6þ �1A2ð5þ �1A
2ÞÞð4A2�2Þg, (33)

G4 ¼
3

64D
f�21A4ð4þ 3A2�2Þ � �1�2A

4ð2þ �2A
2Þg, (34)

D ¼
1

32
ð48þ �1A

2ð16þ 20�1A2 þ �21A
4ÞÞ. (35)

Substituting the result into Eq. (31), using the relation F ¼ dT=dt�, integrating the resulting equation from
0 to 2p for T and noting that the period in the time T domain is 2p lead to the nonlinear frequency–amplitude
relation in the dimensionless t* domain:

o ¼
ffiffiffiffiffiffi
G0

p
1þ

3

16
ðH2

2 þH2
4Þ þ

105

1024
ðH4

2 þH4
4Þ þ

1155

116; 384
ðH6

2 þH6
4Þ þ � � �

� �
, (36)

where

H2 ¼
G2

G0
, (37)
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H4 ¼
G4

G0
. (38)

The dimensionless nonlinear natural frequency o calculated from Eqs. (25), (29) and (36) using the HB and TT
methods is the ratio of the nonlinear natural frequency in time t to the natural frequency of the linear beam.
4. Results and discussion

The theory derived above is valid for vibrations with small rotations but with large amplitude as (ln0)251 in
the derivation of the equation of motion, and this is consistent with the theory presented by Wagner [12]. In
addition, harmonics above the third are ignored, because they have a negligible effect either on qualitative or
on quantitative dynamical behaviour as shown and presented in earlier publications [9–11].

The coefficients of the terms bi given in Eq. (23) are calculated by integrating numerically the coefficients
given in Eqs. (17)–(20). Also, it is worth mentioning that the range of motion amplitudes to be considered in
the present work (i.e., the values of vibration amplitude A) is assumed up to 1.0 for the first mode, 0.4 for the
second mode and 0.2 for the third mode, to be consistent with the assumption of large-amplitude vibration.
A vibration amplitude of 1 corresponds to a ratio of tip displacement/length of the beam equal to 1.

The accuracy of the calculated nonlinear natural frequencies was first examined by comparing the results
obtained using: the harmonic balance method using single (SHB) and two terms (2THB) given in Eqs. (25) and
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(29); the TT using single (STT) and two terms (2TTT) given in Eqs. (30) and (36); and numerically integrating
Eq. (23).

The results obtained for the first mode of a cantilever single tapered beam, i.e. Cr ¼ Ct ¼ 0, and taper ratio
a ¼ 0.2 are presented in Fig. 3 and shown in Table 1. The errors quoted are the differences from the
approximate solutions and the numerical solution which is assumed to be exact. They are also compared with
those obtained by Nageswara Rao and Venkateswara Rao [7]. As can be seen, the most accurate approximate
results when compared to a numerical solution are obtained using the 2THB method. These results almost
equal those of the ‘exact’ ‘‘numerical solution’’. The difference in the linear frequencies for the SHB from the
numerical solution for low amplitudes is due to the fact that in nonlinear systems with strong nonlinearities,
such as the one under consideration, ‘‘Eq. (23)’’, the solution should contain higher harmonics in the assumed
solution. The results obtained from the TT failed to give the expected accuracy and the method gave incorrect
results for amplitude values more than 0.1. It is therefore recommended that this method be not used for
amplitudes greater than 1. The differences between the linear frequencies obtained by Nageswara Rao and
Venkateswara Rao [7] and those of the authors are due to the method of solution. Ref. [7] used expressions
with a single harmonic time degree to obtain equation of motion and also converted the boundary value
problem into an initial value problem before solving the differential equation by the Runge–Kutta method.
The authors have used analytical methods to obtain their approximate solutions which are close to the
numerical solutions.
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From the results shown in Fig. 3, the 2THB method is the most accurate approximate method.
Consequently, all the remaining results were obtained using the method of harmonic balance method with two
terms (2THB).

In Fig. 4, results were obtained for the double-tapered cantilevered beam, i.e. Cr ¼ Ct ¼ 0, where
Cr ¼ EI1/(Krl) and Ct ¼ EI1/(Krl

3), and for different values of the taper ratio a ¼ b0/b1. Results have shown
that the behaviour of the first and second modes is changed from hardening to softening when the taper ratio
is increased, while the third mode is of a softening type regardless of the value of the taper ratio, a. This is due
to the fact that when the taper ratio a increases the mode shape is modified accordingly, which in turn affects
the values of the calculated coefficients b1 given in Eq. (23) and the values of e1 and e2.

This type of nonlinear oscillator given in Eq. (23) is dominated by two competing nonlinearities (�1 €qq2 and
�1q _q

2) and e2q
3, and the behaviour is hardening when the ratio (e1/e2)p1.6 and softening when (e1/e2)41.6 [9].

In Fig. 5 a comparison between the double tapered and wedge-type beams for different values of taper ratio
a ¼ b0/b1 is presented. Results have shown that, for a given value of taper ratio a, the natural frequency of a
double tapered beam is higher than that of a wedge-type beam.

The effect of the beam’s root flexibility on the nonlinear natural frequency is studied and presented in
Figs. 6–8. Results were obtained for a given value of taper ratio a ¼ 0.1 and for the first three modes.

As shown in Figs. 6–8, the qualitative and quantitative behaviour of the nonlinear natural frequency
changes from hardening to a softening depending on the value of the beam’s root flexibility, i.e. the values of
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Fig. 8. Nonlinear natural frequency for a restrained double tapered beam, a ¼ 0.1, Ct ¼ 1: (a) refers to the first mode; (b) refers to the

second mode; and (c) refers to the third mode.
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Cr ¼ EI1/(Krl), Ct ¼ EI1/(Krl
3) and the vibration amplitude A. This is due to the nonlinear interaction between

these values and their effect on the modes’ shape and on the values of bi, i ¼ 1–4, e1 and e2.

5. Conclusions

A mathematical model for calculating the nonlinear natural frequencies of a tapered beam elastically
restrained is derived. The axial shortening due to transverse deflection and the nonlinear curvature are
used in the formulation of the kinetic and potential energy, respectively. The assumed mode method is
used to discretize the continuous Lagrangian of the system and the resultant uni-modal nonlinear differential
equation of motion is solved using the harmonic balance method (HB) and the time transformation method
(TT) to calculate the nonlinear natural frequencies for the first three modes of vibrations. The comparisons
made with a numerical solution of the differential equation show that harmonic balance method with two
terms yields accurate solutions for all amplitudes up to A ¼ 1, the TT fails to yield accurate solutions for all
amplitudes.

Results have shown that for the first and second modes the behaviour is changed from hardening to
softening type when the taper ratio a is increased, while the third mode is of a softening type regardless of the
value of the taper ratio a. Also, for a given value of a taper ratio, the nonlinear natural frequency of a double
tapered beam is higher than that of a single tapered beam.
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From the results presented for the effect of the beam’s root flexibility, it was shown that the nonlinear
natural frequency changes from softening to hardening behaviour depending on combinations of the physical
parameters of the beam Cr, Ct and the vibration amplitude A. This would require a more detailed analysis to
study the forced vibration of the beam, which is currently under consideration.
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